Как повысить КПД электродвигателя: выбираем решение
В настоящее время электромеханические преобразователи считаются одними из самых эффективных технических решений, однако в процессе их эксплуатации возникает ряд проблем. К ним относятся потери энергии по различным причинам - магнитные, электрические и механические – которые сопровождаются тепловым излучением, а также шумом и вибрацией. Эти процессы являются результатом трения элементов, перемагничивания в магнитном поле сердечника якоря электродвигателя, а также скачков нагрузок. Но возможно ли сократить так называемые "утечки" и повысить КПД? Об этом мы поговорим в данной статье.
Современные методы увеличения эффективности работы асинхронных двигателей
Существует общепринятая классификация электрических машин на синхронные, у которых частота вращения ротора совпадает с частотой магнитного поля, и на асинхронные, где магнитное поле вращается с более высокой скоростью, чем ротор.
Электродвигатели последнего типа на сегодняшний день являются наиболее распространенными: около 90% всех двигателей, используемых в мире, являются асинхронными. Они применяются во многих отраслях промышленности, сельского хозяйства и сферы ЖКХ.
Это объясняется тем, что они просты в изготовлении, надежны, доступны по цене и не требуют больших эксплуатационных затрат. Кроме того, КПД асинхронных электродвигателей значительно выше, чем синхронных.
Тем не менее, у такой техники есть и существенные недостатки. Один из них – это высокий пусковой ток, недостаточный пусковой момент, несогласованность механического момента на валу привода с механической нагрузкой (что приводит к резкому увеличению силы тока и избыточным механическим нагрузкам при запуске и пониженной производительности в периоды пониженной нагрузки), невозможность точной регулировки скорости работы и так далее. В результате все эти факторы приводят к значительному снижению эффективности работы.
Чтобы справиться с этими проблемами, специалисты используют различные методы, направленные на повышение КПД асинхронных двигателей. Одним из них является использование частотных преобразователей, которые уменьшают пусковой ток, и, следовательно, пусковую мощность двигателя. Кроме этого, применяются специальные системы управления моментом, которые позволяют точно регулировать мощность двигателя и его скорость в зависимости от потребностей. Это повышает производительность механизма и уменьшает избыточную механическую нагрузку. Также существуют специальные схемы управления током, которые минимизируют потери энергии в механизме и увеличивают его КПД. Все эти методы позволяют достичь более эффективной работы асинхронных двигателей.
Возможности оптимизаторов-контроллеров применения оборудования в промышленности, сельском хозяйстве и сфере жилищно-коммунального хозяйства переносят эффективность дробилок, вентиляторов, ленточных транспортеров, обрабатывающих станков, крутильных агрегатов, лебедок и другого оборудования на новый уровень. Они предотвращают перегрузки кронштейнов при запуске мешалок, нейтрализуют гидроудары в трубопроводах и обеспечивают плавный запуск тяжело и очень тяжело нагруженного оборудования, для чего обычные устройства плавного пуска не подходят.
Цена
Контроллеры-оптимизаторы являются весьма эффективными приборами, позволяющими увеличить КПД оборудования. Кроме того, они оказываются более доступными по цене, если сравнивать их с преобразователями. Например, на отечественном рынке можно купить устройство мощностью 90 кВт за сумму около 90–140 тысяч рублей.
Контроллеры-оптимизаторы – это устройства, которые быстро реагируют на изменение напряжения и снижают расходы электроэнергии на 30-40%. Они также помогают уменьшить воздействие реактивной нагрузки на сеть, повысить КПД привода, а также экономят деньги на конденсаторных компенсирующих устройствах. Применение контроллеров-оптимизаторов также помогает продлить срок службы оборудования и повышает экологичность производства.
Важным преимуществом контроллеров-оптимизаторов является их доступная цена в сравнении с преобразователями частоты. Однако, необходимо учитывать, что контроллеры-оптимизаторы не могут использоваться в случаях, когда требуется изменять скорость вращения электродвигателя.
Таким образом, контроллеры-оптимизаторы оперативно реагирует на изменения напряжения, экономят электроэнергию, уменьшают реактивную нагрузку на сеть и повышают КПД привода. Они также помогают сократить расходы на конденсаторные компенсирующие устройства, продлить срок службы оборудованию и повысить экологичность производства. Незаменимы они только в тех случаях, когда необходимо изменять скорость вращения электродвигателя.
Как правильно выбрать устройство, способное повысить КПД оборудования? Дело в том, что выбор определенного электропривода зависит от того, как он работает. Нужно понимать, что если необходимо изменять скорость привода, то здесь единственно верным выбором будет преобразователь частоты. Но если скорость вращения двигателя не изменяется или это не является целями, то более доступным решением будет использовать контроллеры-оптимизаторы. Такие устройства обойдутся значительно дешевле, чем преобразователи частоты.
На заметку: как повысить КПД электродвигателя
Если вы занимаетесь эксплуатацией электроприводов, то знаете, что их эффективность напрямую зависит от ряда факторов: степени загрузки по отношению к номинальной, конструкции, модели, степени износа и отклонения напряжения в сети от номинального. Кроме того, КПД электродвигателя может заметно снизиться после перемотки.
Чтобы оптимизировать работу электропривода, необходимо обеспечивать его загрузку на уровне не менее 75%, увеличивать коэффициент мощности, регулировать напряжение и, если возможно, частоту подаваемого тока. Для этого применяется специальное оборудование, позволяющее повысить КПД электродвигателя. Однако не всегда возможно или целесообразно реализовать все перечисленные меры.
Наиболее востребованные приборы, которые позволяют улучшить работу электродвигателя, – это частотные преобразователи и устройства плавного пуска. Первые изменяют скорость вращения двигателя путем изменения частоты питающего напряжения, а вторые ограничивают скорость нарастания пускового тока и его максимальное значение.
В данной статье мы рассмотрим современные решения для повышения КПД электродвигателей с точки зрения их эффективности работы и экономической целесообразности.
Частотные преобразователи используются для улучшения работы асинхронных двигателей. Они способны изменять однофазное или трехфазное напряжение с частотой 50 Гц, превращая его в напряжение с настраиваемой частотой, которая обычно варьируется от 1 до 300-400 Гц, но может достигать и 3000 Гц. Более того, преобразователи регулируют также амплитуду напряжения. Это позволяет добиться значительного повышения эффективности работы электродвигателя.
Одним из главных инструментов управления скоростью электродвигателей в современной промышленности является преобразователь частоты - также известный как «частотник». Принцип работы «частотника» заключается в том, чтобы изменять частоту входного электрического сигнала, поступающего на электродвигатель, что позволяет регулировать скорость вращения вала.
Обычно «частотник»управляет работой электронных ключей, а также контролирует оборудование при помощи электронных цепей. Он включает также схемы, работающие в режиме ключей и открывающие тиристоры или транзисторы. В зависимости от устройства и принципов работы, существуют два класса «частотников».
Первый класс использует непосредственную связь и представляет собой выпрямители. Они обеспечивают низкочастотное напряжение, которое позволяет регулировать скорость вращения привода в определенных пределах. Этот тип устройств не лучшим образом подходит для управления мощным оборудованием, регулирующим множество технологических параметров.
Второй тип устройств использует промежуточное звено постоянного тока. В таких аппаратах производится двойное преобразование энергии, чтобы обеспечить выходное напряжение с необходимой амплитудой и частотой. Это дает возможность применять их для управления электродвигателями с широким диапазоном мощности и скоростью вращения. Однако, несмотря на их многофункциональность, такие преобразователи частоты имеют несколько более низкий КПД, чем выпрямители.
Несмотря на это, устройства второго типа являются наиболее популярными среди «частотников», которые обеспечивают плавное регулирование скорости вращения двигателей с помощью электронной технологии.
Статья рассказывает о различных функциональных возможностях частотных преобразователей и их соответствии целям использования.
Использование преобразователей с невысокой перегрузочной способностью и U/f-управлением чаще всего применяется для электроприводов насосов и вентиляторов, где необходимо увеличить момент двигателя на низких частотах.
Более совершенные устройства с векторным управлением регулируют не только частоту и амплитуду выходного напряжения, но и фазы тока, протекающего через обмотки статора. Они наиболее эффективны при использовании в конвейерном, прокатном, упаковочном, подъемном оборудования и прочих.
При необходимости контролируемого торможения двигателя используется функция замедления, которая может различаться в зависимости от его интенсивности. В таких случаях можно применять преобразователи с встроенным внешним блоком торможения и тормозным резистором или рекуперативным блоком торможения. Режим динамического торможения позволяет переводить механическую энергию в электрическую и либо рассеивать ее в тепло на сопротивлении тормозного резистора, либо возвращать энергию в сеть посредством рекуперации. Это решение актуально для станкового и конвейерного оборудования.
Частотные преобразователи с обратной связью обеспечивают более точное поддержание постоянной скорости вращения при переменной нагрузке, что повышает качество технологического процесса в замкнутых системах. Такие устройства широко используются в робототехнике, дерево- и металлообработке, а также в системах высокоточного позиционирования.
В последние годы цены на частотные преобразователи подвержены высокой волатильности, как отмечают финансисты. За прошедший год-полтора их стоимость значительно выросла. Такой рост цен можно объяснить не только колебаниями валютного курса, но и другими факторами.
В 2021 году стоимость частотных преобразователей мощностью 90 кВт от российских и зарубежных производителей варьировалась в районе от 200 до 700 тысяч рублей, в зависимости от производителя.
Достоинства и недостатки преобразователя частоты для асинхронного двигателя, описанного выше, имеют свои преимущества и недостатки. Одним из главных достоинств является снижение расхода электроэнергии, также преобразователь обеспечивает плавный запуск привода, высокую точность регулировки и увеличивает пусковой момент. Благодаря этому, преобразователь стабилизирует скорость вращения при переменной нагрузке, и в совокупности все указанные преимущества позволяют повысить коэффициент полезного действия машины.
Но к недостаткам преобразователя можно отнести высокую стоимость, что может отпугнуть потенциальных покупателей. Также его использование может вызывать создание электромагнитных помех в процессе работы.
Таким образом, при использовании преобразователя частоты необходимо учитывать и достоинства, и недостатки, и сделать окончательный выбор в зависимости от конкретных условий эксплуатации и требований.
Существуют устройства плавного пуска (УПП), которые используются для обеспечения плавного запуска, разгона и остановки электродвигателя. Они ограничивают скорость увеличения пускового тока в течение определенного времени. Однако традиционные устройства плавного пуска не способны повысить КПД и могут применяться только для управления приводами с небольшой нагрузкой на валу.
Контроллеры-оптимизаторы - это разновидности УПП, которые позволяют повысить энергоэффективность двигателей. Они согласовывают крутящий момент с моментом нагрузки и способствуют снижению потребления электроэнергии на минимальных нагрузках на 30–40%. Контроллеры-оптимизаторы предназначены для приводов, которые не нуждаются в изменении числа оборотов двигателя.
Например, эскалатор потребляет большое количество энергии, и для снижения энергопотребления при помощи преобразователя частоты, нужно уменьшить скорость эскалатора. Однако, это невозможно, так как это увеличит время подъема пассажиров. Контроллеры-оптимизаторы позволяют снизить энергопотребление без изменения скорости электропривода в тех случаях, когда он недогружен.
Контроллеры-оптимизаторы представляют собой компоненты, которые контролируют фазы тока и напряжения питания электродвигателя. В результате этого осуществляется полное управление приводом на всех его этапах работы, а также защита его от таких аномалий, как нарушение чередования фаз или пониженного/повышенного напряжения. Это устройство эффективно согласует значение крутящего момента, развиваемого двигателем, и значение механического момента, нагружающего вал привода. Коэффициент мощности повышается, при этом скорость вращения ротора остается прежней. Важно отметить, что контроллеры-оптимизаторы не требуют подключения дополнительных устройств, так как их функциональность является завершенной.
Кроме того, контроллеры-оптимизаторы обладают способностью прекращать брать мощность из питающей сети в те моменты, когда полупроводниковые переходы тиристоров закрыты, то есть не пропускают электрический ток. Открываются тиристоры при поступлении управляющих импульсов. Задержка подачи управляющих импульсов определяется степенью нагрузки привода. При переходе тока через ноль тиристоры закрываются.
Очень важно отметить, что контроллеры-оптимизаторы реагируют на изменение нагрузки настолько оперативно, что скорость реакции составляет лишь сотые доли секунды.
Фото: freepik.com